1. Digital Modulation
1.1 Signal Space Representation
Digital modulation involves mapping digital information into analog signals suitable for transmission over physical channels. The signal space representation provides a geometric interpretation of signals, simplifying analysis and design.
- Signal Space: A vector space of functions $ x(t) $ defined over a time set $ T $.
- Inner Product:
$$\langle x_1(t), x_2(t) \rangle = \int_{-\infty}^{\infty} x_1(t) x_2^*(t) \, dt $$
- Orthogonality: Two signals are orthogonal if their inner product is zero.
- Norm and Energy:
$$\|x(t)\| = \sqrt{\mathcal{E}_x}, \quad \mathcal{E}_x = \int_{-\infty}^{\infty} |x(t)|^2 \, dt $$
- Distance:
$$d(x_1, x_2) = \|x_1 - x_2\| $$
1.2 Orthonormal Bases
A set of basis functions $\{\phi_j(t)\}$ is orthonormal if:
$$\langle \phi_j, \phi_n \rangle = \delta_{jn} $$
Any signal $ s(t) $ in the subspace can be expressed as:
$$s(t) = \sum_{j=1}^N s_j \phi_j(t), \quad s_j = \langle s(t), \phi_j(t) \rangle $$
1.3 Modulation Schemes
One-Dimensional Modulation
- OOK (On-Off Keying):
$$s_m(t) = A_m p(t), \quad A_m \in \{0, 1\} $$
- PAM (Pulse Amplitude Modulation):
$$s_m(t) = A_m p(t), \quad A_m \in \{\pm1, \pm3, \ldots, \pm(M-1)\} $$
Two-Dimensional Modulation
- M-PSK (Phase Shift Keying):
$$s_m(t) = g(t) \cos(2\pi f_c t + \theta_m), \quad \theta_m = \frac{2\pi m}{M} $$
- QAM (Quadrature Amplitude Modulation):
$$s_m(t) = I(t) \cos(2\pi f_c t) - Q(t) \sin(2\pi f_c t) $$
Multi-Dimensional Modulation
- PPM (Pulse Position Modulation)
- FSK (Frequency Shift Keying)
2. Performance Analysis
2.1 Error Probability for Binary Modulation
- Binary PAM:
$$P_b = Q\left( \sqrt{\frac{2\mathcal{E}_b}{N_0}} \right) $$
- Binary Orthogonal Signaling:
$$P_b = Q\left( \sqrt{\frac{\mathcal{E}_b}{N_0}} \right) $$
Binary PAM outperforms orthogonal signaling for the same energy.
2.2 M-ary Modulation
M-PAM
- Symbol Error Probability:
$$P_e = \frac{2(M-1)}{M} Q\left( \sqrt{\frac{6(\log_2 M) \mathcal{E}_b}{(M^2-1)N_0}} \right) $$
M-PSK
- For QPSK:
$$P_e = 2P_{\text{BPSK}} - P_{\text{BPSK}}^2 $$
- With Gray coding:
$$P_b \approx \frac{P_e}{\log_2 M} $$
M-QAM
- Rectangular QAM:
$$P_e \approx 4\left(1 - \frac{1}{\sqrt{M}}\right) Q\left( \sqrt{\frac{3\log_2 M}{M-1} \cdot \frac{\mathcal{E}_b}{N_0}} \right) $$
M-ary Orthogonal Signaling
- Symbol Error Probability:
$$P_e \leq (M-1) Q\left( \sqrt{\frac{\mathcal{E}_s}{N_0}} \right) $$
- Bit Error Probability:
$$P_b \approx \frac{P_e}{2} $$
2.3 Spectral Efficiency
- Spectral Efficiency:
$$\nu = \frac{R_b}{W} \quad \text{(bits/s/Hz)} $$
- PAM, PSK, QAM: $ \nu \to \infty $ as $ M \to \infty $
- Orthogonal signaling (PPM, FSK): $ \nu \to 0 $ as $ M \to \infty $
3. Optimal Receiver Design
3.1 AWGN Channel Model
Received signal:
$$r(t) = s_m(t) + n(t), \quad n(t) \sim \mathcal{N}(0, N_0/2) $$
3.2 Demodulation
Correlation-Type Demodulator
$$r_k = \int_{0}^{T} r(t) \phi_k(t) \, dt = s_{mk} + n_k $$
Matched Filter Demodulator
$$h_k(t) = \phi_k(T - t), \quad r_k = (r \star h_k)(T) $$
3.3 Detection
MAP Detector
$$\hat{m} = \arg\max_{m} P(s_m | \mathbf{r}) = \arg\max_{m} p(\mathbf{r}|s_m) P(s_m) $$
ML Detector (for equiprobable symbols)
$$\hat{m} = \arg\max_{m} p(\mathbf{r}|s_m) = \arg\min_{m} \|\mathbf{r} - \mathbf{s}_m\| $$
3.4 Noncoherent and Differential Demodulation
- Noncoherent OOK/FSK: Envelope detection to handle phase mismatch.
- Differential Modulation (DBPSK/DQPSK): Encodes information in phase changes to combat fixed phase offsets.
说些什么吧!